
CERC 2017: Presentation of solutions

University of Zagreb

A: Assignment Algorithm
B: Buffalo Barricades
C: Cumulative Code
D: Donut Drone
E: Embedding Enumeration
F: Faulty Factorial
G: Gambling Guide
H: Hidden Hierarchy
I: Intrinsic Interval
J: Justified Jungle
K: Kitchen Knobs
L: Lunar Landscape

Hard

Hard

Hard

Hard

Hard

Easy

Easy

Easy

Easy

Medium

Medium

Medium

Problem A
Assignment Algorithm

Submits: 97
Accepted: at least 56

First solved by: FI MUNI 01
Masaryk University

(Fabík, Pokorný, Priessnitz)
00:37:18

Author: Ivan Paljak

...........
--#.###.---
---.---.-#-
---.---.-##
---.--#.#-#
###.#-#.--#
##-.---.--#
-#-.-##.-#-
-##.--#.#-#
--#.---.--#
...........
---.#-#.---
-#-.#--.-#-
---.###.-#-
#--.--#.#-#
#--.##-.--#
---.---.###
--#.---.#--
-##.---.--#
---.---.---
...........

...........
ei#.###.ckg
--w.o-r.-#-
---.s-z.-##
---.--#.#-#
###.#-#.--#
##-.---.--#
-#-.-##.-#-
-##.--#.#-#
--#.p-u.--#
...........
dja.#h#.blf
-#-.#-x.-#-
---.###.-#-
#--.--#.#-#
#--.##-.--#
---.---.###
--#.t--.#--
-##.y--.--#
--q.m-n.v--
...........

Implement the rules carefully.

Break down the complex algorithm into smaller simple
pieces that are easy to implement.

Tip: Use helper functions.
● NumEmptySeats(row)
● SelectRow()
● GetSeatPriority(column)
● GetPlaneBalance()
● SelectSeat(row)
● ...

Problem H
Hidden Hierarchy

Submits: 95
Accepted: at least 52

First solved by: MFF3
Charles University in Prague
(Konečný, Madaj, Rozhoň)

00:22:48

Author: Luka Kalinovčić

Files
/sys/kernel/notes 100
/cerc/problems/a/testdata/in 1000000
/cerc/problems/a/testdata/out 8
/cerc/problems/a/luka.cc 500
/cerc/problems/a/zuza.cc 5000
/cerc/problems/b/testdata/in 15
/cerc/problems/b/testdata/out 4
/cerc/problems/b/kale.cc 100
/cerc/documents/rules.pdf 4000

Directory tree
- / 1009727
- /cerc/ 1009627
 /cerc/documents/ 4000
- /cerc/problems/ 1005627
- /cerc/problems/a/ 1005508
 /cerc/problems/a/testdata/ 1000008
- /cerc/problems/b/ 119
 /cerc/problems/b/testdata/ 19
- /sys/ 100
 /sys/kernel/ 100

Files
/sys/kernel/notes 100
/cerc/problems/a/testdata/in 1000000
/cerc/problems/a/testdata/out 8
/cerc/problems/a/luka.cc 500
/cerc/problems/a/zuza.cc 5000
/cerc/problems/b/testdata/in 15
/cerc/problems/b/testdata/out 4
/cerc/problems/b/kale.cc 100
/cerc/documents/rules.pdf 4000

Directory tree
- / 1009727
- /cerc/ 1009627
 /cerc/documents/ 4000
- /cerc/problems/ 1005627
- /cerc/problems/a/ 1005508
 /cerc/problems/a/testdata/ 1000008
+ /cerc/problems/b/ 119
- /sys/ 100
 /sys/kernel/ 100

Files
/sys/kernel/notes 100
/cerc/problems/a/testdata/in 1000000
/cerc/problems/a/testdata/out 8
/cerc/problems/a/luka.cc 500
/cerc/problems/a/zuza.cc 5000
/cerc/problems/b/testdata/in 15
/cerc/problems/b/testdata/out 4
/cerc/problems/b/kale.cc 100
/cerc/documents/rules.pdf 4000

Directory tree
- / 1009727
- /cerc/ 1009627
 /cerc/documents/ 4000
- /cerc/problems/ 1005627
- /cerc/problems/a/ 1005508
 /cerc/problems/a/testdata/ 1000008
+ /cerc/problems/b/ 119
+ /sys/ 100

Step 1: Build the directory tree.
For each file:

Make a list p of parent directories up to the root
For each dir in list p:

Add file size to dir size
For each adjacent dir_A, dir_B in list p:

Add dir_B to the set of dir_A’s subdirectories

Step 2: Find directories to collapse.
Collapse a dir if:
a) It has subdirectories, and
b) size of each subdirectory is below threshold.

Step 3: Print the directory tree recursively.

Tip: Consider Python.

Problem F
Faulty Factorial

Submits: 229
Accepted: at least 32

First solved by: UW3
University of Warsaw

(Hołubowicz, Paluszek, Tabaszewski)
00:38:14

Author: Lovro Pužar

Faulty factorial: Take any factor of a factorial and
make it smaller, but keep it positive.

Factorial: 1 · 2 · 3 · 4 · 5 · 6 · 7 · 8

Faulty factorial: 1 · 2 · 3 · 4 · 5 · 2 · 7 · 8

Case r = 0:
If n < p:

None of the factors is divisible by p: impossible.

Problem: Find any faulty factorial of length n that
gives reminder r when divided by prime number p.

Case r = 0:
If n < p:

None of the factors is divisible by p: impossible.
Else:

The factorial is already divisible by p, just don’t
mess it up. Impossible when n = p = 2.

Problem: Find any faulty factorial of length n that
gives reminder r when divided by prime number p.

Case r > 0:
If n >= 2p:

Two factors divisible by p, we can’t make both
smaller: impossible.

Problem: Find any faulty factorial of length n that
gives reminder r when divided by prime number p.

Case r > 0:
If n >= 2p:

Two factors divisible by p, we can’t make both
smaller: impossible.

Else if n >= p:
We need to change the factor p, if possible.

Problem: Find any faulty factorial of length n that
gives reminder r when divided by prime number p.

Case r > 0:
If n >= 2p:

Two factors divisible by p, we can’t make both
smaller: impossible.

Else if n >= p:
We need to change the factor p, if possible.

Else:
n < p <= 10 000 000, so we can try each factor.

Problem: Find any faulty factorial of length n that
gives reminder r when divided by prime number p.

Problem: Find a faulty factorial of length n < p, with
a fault at position i, that gives reminder r > 0 when
divided by prime number p.

We are looking for x such that:
n! / i · x ≡ r (modulo p)

Problem: Find a faulty factorial of length n < p, with
a fault at position i, that gives reminder r > 0 when
divided by prime number p.

We are looking for x such that:
n! / i · x ≡ r (modulo p)
x ≡ r · i / n! (modulo p)

Problem: Find a faulty factorial of length n < p, with
a fault at position i, that gives reminder r > 0 when
divided by prime number p.

We are looking for x such that:
n! / i · x ≡ r (modulo p)
x ≡ r · i / n! (modulo p)
x ≡ r · i · n!-1 (modulo p)

Problem: Find a faulty factorial of length n < p, with
a fault at position i, that gives reminder r > 0 when
divided by prime number p.

We are looking for x such that:
n! / i · x ≡ r (modulo p)
x ≡ r · i / n! (modulo p)
x ≡ r · i · n!-1 (modulo p)
x ≡ r · i · n!p-2 (modulo p)

Compute x, and check whether x < i.

Problem J
Justified Jungle

Submits: 203
Accepted: at least 17

First solved by: Jagiellonian 1
Jagiellonian University in Krakow

(Hlembotskyi, Stokowacki, Zieliński)
00:16:32

Author: Luka Kalinovčić, Ivan Katanić

Problem: Given a tree, find all integers c, such that
we can cut a tree into components of size c.

c = 3

Problem: Given a tree, find all integers c, such that
we can cut a tree into components of size c.

c = 2

Problem: Given a tree, find all integers c, such that
we can cut a tree into components of size c.

c = 1

Problem: Given a tree, find all integers c, such that
we can cut a tree into components of size c.

The tree size needs to be divisible by c.
There aren’t that many divisors: worst case 240 for
n=720720.
We can try each divisor separately.

Problem: Given a tree of size n and integer c, such
that c | n, can we cut it into components of size c?

Iterative algorithm:
If n = c: done.
Otherwise:

Find an edge that divides the tree into subtrees
of sizes c and n − c.
If there is no such edge: impossible.
Otherwise: Cut the edge and repeat the
algorithm on the subtree of size n − c.

c = 3

Problem: Given a tree of size n and integer c, such
that c | n, can we cut it into components of size c?

c = 3

Problem: Given a tree of size n and integer c, such
that c | n, can we cut it into components of size c?

Problem: Given a tree of size n and integer c, such
that c | n, can we cut it into components of size c?

c = 2

Problem: Given a tree of size n and integer c, such
that c | n, can we cut it into components of size c?

c = 2

Problem: Given a tree of size n and integer c, such
that c | n, can we cut it into components of size c?

c = 2

Problem: Given a tree of size n and integer c, such
that c | n, can we cut it into components of size c?

Problem: Given a tree of size n and integer c, such
that c | n, can we cut it into components of size c?

Problem: Given a tree of size n and integer c, such
that c | n, can we cut it into components of size c?

Iterative algorithm is difficult to implement in O(n), and
might time out.

Simplified algorithm:
Root the tree and compute the size of each subtree
(only once, no need to repeat for each divisor).

Find edges with subtrees sizes equal to a multiple of
c. Those are the ones we’ll end up cutting.

If the number of found edges is equal to n / c − 1: yes!
Otherwise: no!

1

1

34

1112

6

2 1

3

1

1

1

1

34

1112

6

2 1

3

1

1

c = 2

Found edges:
3 ≠ n / c − 1 → NO

1

1

34

1112

6

2 1

3

1

1

c = 3

Found edges:
3 = n / c − 1 → YES

Overall complexity: O(n·σ(n)), where σ(n) is the
number of divisors of n.

O(n + σ(n)2) is possible with an extra insight.

Problem L
Lunar Landscape

Submits: 41
Accepted: at least 5

First solved by: UW2
University of Warsaw

(Boguta, Czajka, Farbiś)
02:02:13

Author: Luka Kalinovčić

Key observation: The grid is small enough to iterate
over each unit square and “paint it blue” in memory.

However, the naive algorithm that iterates through
each unit square of each frame is too slow.

Instead, let’s first place a “bucket full of paint” in a
corner of each frame.
Then, we’ll sweep across the grid and whenever we
encounter a bucket, we’ll paint one unit square and
propagate the bucket to neighbouring squares.

2

4

2

2

4

2

2

2

3 3

3

2

2

3 3

3

2

2

3 3 2

2

2

2

3 3 2

2

2

2

3 3 2 1

1

2

2

3 3 2 1

1

2

2

3 3 2 1

2

2

3 3 2 1

2

3 3 2 1

11

2

3 3 2 1

11

2

3 2 1

21 2

221 12

111 11

2

4

2

4

2

3

33

2

3

33

2

3

3

2

2

2

3

3

2

2

2

3

2

2 2

2

2

3

2

2 2

2

2

3

2

2

21

2 2

2

1

21 1

2 2

1

1

1

1 1

1 11

1 1

For each triangle we can
deduce whether it was painted
or not.
We need to check whether we
ever had a type A bucket of
paint in the lower left corner of
the unit square or a type B
bucket in the right position
(depending on the triangle
type).

For each triangle we can
deduce whether it was painted
or not.
We need to check whether we
ever had a type A bucket of
paint in the lower left corner of
the unit square or a type B
bucket in the right position
(depending on the triangle
type).

For each triangle we can
deduce whether it was painted
or not.
We need to check whether we
ever had a type A bucket of
paint in the lower left corner of
the unit square or a type B
bucket in the right position
(depending on the triangle
type).

For each triangle we can
deduce whether it was painted
or not.
We need to check whether we
ever had a type A bucket of
paint in the lower left corner of
the unit square or a type B
bucket in the right position
(depending on the triangle
type).

Time complexity: O(n + H · W)
Memory complexity: O(H · W)

Problem G
Gambling Guide

Submits: 41
Accepted: at least 16

First solved by: UW1
University of Warsaw

(Dębowski, Radecki, Sommer)
01:30:08

Author: Gustav Matula

Problem:
You're located at a node in an undirected graph.

In each step a neighboring node is chosen at
random, and you can either move there or stay
where you are.

Find the expected number of steps to get from node
1 to node N, if you used an optimal strategy.

Assume we knew f(x) - the expected number of
steps to get from node x to node N.

The optimal strategy to use at each node x is then
an obvious one: when offered to move to a
neighbour y, move if f(y) < f(x), and stay otherwise.

But we don't know f(x), except for f(N) = 0.

Let S be a set of nodes for which we know the
value of f(x). Starting from S = {N}, we'll keep
adding nodes one by one in the order of increasing
values f(x).

To find the next node to add, we consider nodes
outside of S, but neighbouring some node in S.
Compute the f'(x) for each such node following the
strategy as if that node is the next to add (i.e. move
to nodes in S, or stay otherwise).

The node with minimal f'(x) is the next to add.
We set f(x) = f'(x) and add x to S.

We end up with an algorithm very similar to Dijkstra's
single source shortest path algorithm, and we can
implement it efficiently using the same techniques.

Complexity: O((N + M) log N) using the classic
implementation with a binary heap (or STL set).

Problem D
Donut Drone

Submits: 60
Accepted: ?

Author: Luka Kalinovčić

1 2 6 1 1

2 4 1 2 2

5 5 5 3 5

3 1 2 5 3

1 2 6 1 1

2 4 1 2 2

5 5 5 3 5

3 1 2 5 3

1 2 6 1 1

2 4 1 2 2

5 5 5 3 5

3 1 2 5 3

1 2 6 1 1

2 4 1 2 2

5 5 5 3 5

3 1 2 5 3

1 2 6 1 1

2 4 1 2 2

5 5 5 3 5

3 1 2 5 3

1 2 6 1 1

2 4 1 2 2

5 5 5 3 5

3 1 2 5 3

1 2 6 1 1

2 4 1 2 2

5 5 5 3 5

3 1 2 5 3

1 2 6 1 1

2 4 1 2 2

5 5 5 3 5

3 1 2 5 3

1 2 6 1 1

2 4 1 2 2

5 5 5 3 5

3 1 2 5 3

1 2 6 1 1

2 4 1 2 2

5 5 5 3 5

3 1 2 5 3

The task is to implement two functions:
move(k): Moves a drone k steps and reports the
final coordinates.
update(row, col, value): Updates the elevation at
provided coordinates.

1 2 6 1 1

2 4 1 2 2

5 5 5 3 5

3 1 2 5 3

Let’s start with a naive solution:
def simple_move(k):
 for i in range(k):
 coords = step(coords)
 return coords

Complexity: O(k) - too slow.

1 2 6 1 1

2 4 1 2 2

5 5 5 3 5

3 1 2 5 3

Observation: The drone will eventually enter a cycle.

1 2 6 1 1

2 4 1 2 2

5 5 5 3 5

3 1 2 5 3

Observation: The drone will eventually enter a cycle.

1 2 6 1 1

2 4 1 2 2

5 5 5 3 5

3 1 2 5 3

Observation: The drone will eventually enter a cycle.

1 2 6 1 1

2 4 1 2 2

5 5 5 3 5

3 1 2 5 3

Observation: The drone will eventually enter a cycle.

1 2 6 1 1

2 4 1 2 2

5 5 5 3 5

3 1 2 5 3

Observation: The drone will eventually enter a cycle.

1 2 6 1 1

2 4 1 2 2

5 5 5 3 5

3 1 2 5 3

Observation: The drone will eventually enter a cycle.

def smarter_move(k):
 first_seen = dict()
 for i in range(k):
 if coords not in first_seen:
 first_seen[coords] = i
 else:
 cycle_length = i - first_seen[coords]
 steps_left = k - i
 return simple_move(steps_left % cycle_length)
 coords = step(coords)
 return coords

Complexity O(R · C) - still too slow in the worst case.

Key idea: Maintain an array jump[row] that stores
the cell we would end up if we moved C steps from
a cell (row, 1) in the first column.

As soon as we reach the first column we can start
making jumps of size C that stay in the first column
until there are less C steps to make.

Then we proceed to make single steps again to find
the final cell.

If we also implement the cycle detection among the
cells in the first column we end up with a O(R + C)
move operation.

However, the update(row, col, value) becomes tricky,
as we may need to update the jump[row] array.

1 2 6 1 1 1

2 8 1 2 2 2

5 5 5 3 3 5

7 7 7 4 2 1

6 5 6 2 1 4

3 1 2 5 6 3

Up to three cells may be directly affected.

1 2 6 1 1 1

2 8 1 2 2 2

5 5 5 3 3 5

7 7 7 4 2 1

6 5 6 2 1 4

3 1 2 5 6 3

Up to three cells may be directly affected.

1 2 6 1 1 1

2 8 1 2 2 2

5 5 5 3 3 5

7 7 7 1 2 1

6 5 6 2 1 4

3 1 2 5 6 3

For each affected cell, we'll run the update algorithm.

1 2 6 1 1 1

2 8 1 2 2 2

5 5 5 3 3 5

7 7 7 1 2 1

6 5 6 2 1 4

3 1 2 5 6 3

For each affected cell, we'll run the update algorithm.
1) Repeatedly make steps to find in which cell in the
first column we'll end up.

1 2 6 1 1 1

2 8 1 2 2 2

5 5 5 3 3 5

7 7 7 1 2 1

6 5 6 2 1 4

3 1 2 5 6 3

For each affected cell, we'll run the update algorithm.
1) Repeatedly make steps to find in which cell in the
first column we'll end up.

1 2 6 1 1 1

2 8 1 2 2 2

5 5 5 3 3 5

7 7 7 1 2 1

6 5 6 2 1 4

3 1 2 5 6 3

For each affected cell, we'll run the update algorithm.
1) Repeatedly make steps to find in which cell in the
first column we'll end up.

1 2 6 1 1 1

2 8 1 2 2 2

5 5 5 3 3 5

7 7 7 1 2 1

6 5 6 2 1 4

3 1 2 5 6 3

For each affected cell, we'll run the update algorithm.
1) Repeatedly make steps to find in which cell in the
first column we'll end up.

1 2 6 1 1 1

2 8 1 2 2 2

5 5 5 3 3 5

7 7 7 1 2 1

6 5 6 2 1 4

3 1 2 5 6 3

For each affected cell, we'll run the update algorithm.
1) Repeatedly make steps to find in which cell in the
first column we'll end up.

1 2 6 1 1 1

2 8 1 2 2 2

5 5 5 3 3 5

7 7 7 1 2 1

6 5 6 2 1 4

3 1 2 5 6 3

For each affected cell, we'll run the update algorithm.
2) Starting from the affected cell, backtrack to the first
column, maintaining an interval of affected rows.

1 2 6 1 1 1

2 8 1 2 2 2

5 5 5 3 3 5

7 7 7 1 2 1

6 5 6 2 1 4

3 1 2 5 6 3

For each affected cell, we'll run the update algorithm.
2) Starting from the affected cell, backtrack to the first
column, maintaining an interval of affected rows.

1 2 6 1 1 1

2 8 1 2 2 2

5 5 5 3 3 5

7 7 7 1 2 1

6 5 6 2 1 4

3 1 2 5 6 3

For each affected cell, we'll run the update algorithm.
2) Starting from the affected cell, backtrack to the first
column, maintaining an interval of affected rows.

1 2 6 1 1 1

2 8 1 2 2 2

5 5 5 3 3 5

7 7 7 1 2 1

6 5 6 2 1 4

3 1 2 5 6 3

For each affected cell, we'll run the update algorithm.
3) If we reach the first column, we have an interval of
rows to update jump[row] for.

1 2 6 1 1 1

2 8 1 2 2 2

5 5 5 3 3 5

7 7 7 1 2 1

6 5 6 2 1 4

3 1 2 5 6 3

Interval bounds may only move by ±1 between
neighbouring columns, so we can maintain the
affected interval in O(1) per column as we backtrack.
Overall update complexity is O(C).

1 2 6 1 1 1

2 8 1 2 2 2

5 5 5 3 3 5

7 7 7 1 2 1

6 5 6 2 1 4

3 1 2 5 6 3

Problem B
Buffalo Barricades

Submits: 17
Accepted: at least 1

First solved by: UW1
University of Warsaw

(Dębowski, Radecki, Sommer)
02:40:43

Author: Luka Kalinovčić

1

1

2

1

2

3

1

2

4

3

High level algorithm:

1) Identify the regions at the end, when all fences are up.

2) Count the buffalos in each region.

3) Work backwards, removing fences and merging the
two regions that become one (using the standard
union-find algorithm). Prior to the fence removal we
simply record the current number of buffalos in the
region to output later.

We'll do 1) and 2) together in a single pass of a
sweep-line algorithm. In addition to that, we'll also
compute the ids of regions that need to be merged in
step 3) at each fence removal.

Sweep-line algorithm overview:

We process fence posts and buffalos in order of
decreasing y coordinate.

At each step we maintain a set of "active" vertical fences
that have not yet hit another horizontal fence.

a) When we encounter a buffalo, we find the closest
active fence to the right, that's the fence of a region
containing the buffalo at the end.

Sweep-line algorithm overview:

We process fence posts and buffalos in order of
decreasing y coordinate.

At each step we maintain a set of "active" vertical fences
that have not yet hit another horizontal fence.

b) When we encounter a fence, we find the neighboring
region that it will get merged with when the fence is
removed the same way: it's the first active fence to the
right.

Sweep-line algorithm overview:

We process fence posts and buffalos in order of
decreasing y coordinate.

At each step we maintain a set of "active" vertical fences
that have not yet hit another horizontal fence.

c) We also erect the horizontal fence starting from the
fence post going to the left. Our fence will hit the first
active fence to the left that has a smaller index (i.e. was
erected prior to this fence). Other vertical fences we
encounter along the way will, in turn, hit the horizontal
fence we are building, so we remove them from the
active set.

1

2

3

4

1

2

3

4

2

3

1

3

2

3

1

3

2

1

4

3

2

1

4

3

2

1

4

3

2

1

4

3

2

1

4

3

2

1

4

3

2

1

4

3

2

1

4

3

2

1

4

3

2

1

4

3

1

4

3

2

1

4

3

2

1

4

3

2

Complexity O((N + M) log (N + M))

Problem K
Kitchen Knobs

Submits: 52
Accepted: at least 1

First solved by: UW1
University of Warsaw

(Dębowski, Radecki, Sommer)
01:24:54

Author: Goran Žužić, Luka Kalinovčić

Weird kitchen knobs with 7 non-zero digits. The power of
a kitchen element is the number you get from reading the
digits clockwise starting from the top position.

Power: 9689331

We have a sequence of N kitchen elements, and can
rotate any consecutive subsequence of kitchen knobs by
an arbitrary degree in a single step.

Find the smallest number of steps to get maximum
power on each element.

Because we have exactly 7 digits on each knob, every
element either has:

a) all digits the same, in which case it's always at
maximal power, or

b) exactly one position in which the maximal power is
achieved.

We can pretend as if knobs of type a) didn't exist, and
simplify the problem statement:

Given a sequence A with elements from [0, 6], find the
smallest number of operations to make every element
equal to 0. In a single operation we can add k to each
number in an arbitrary subsequence of A (modulo 7).

0 3 6 5 5 5

0 3 3 2 2 2
+ 4

0 0 0 2 2 2
+ 4

0 0 0 0 0 0
+ 5

1 5 6 2 0 5 2 32

Let define another sequence B: B[i] = A[i] − A[i − 1]

A:

1 4 1 3 5 5 4 10B: 4

Observe what happens to sequence B as we apply the
operation to sequence A.

+ 2

1 5 1 4 2 0 4 34A:

1 4 3 3 5 5 4 60B: 4

Once again we can simplify the problem:

Given a set B with elements from [0, 6], find the smallest
number of operations to make every element equal to 0.
In a single operation we can add k to any number in the
set and subtract k from any other number in the set
(modulo 7).

1 4 1 3 5 5 4 10 4

1 2 1 3 5 0 4 10 4

+2-2

1 0 1 3 0 0 4 10 4

+2-2

1 0 1 0 0 0 0 10 4

+3-3

2 0 0 0 0 0 0 10 4

-1+1

3 0 0 0 0 0 0 00 4

-1+1

0 0 0 0 0 0 0 00 0

-4+4

Observation: Given any set of N numbers that add up to
0 (modulo 7), we can make all numbers zero in N − 1
operations.

In each operation take any two non-zero numbers from
the set, and make one of them zero. If there are only two
numbers left, it is guaranteed they will both become zero
after the last operation.

Simplifying the problem even further:

Given a set B with elements from [0, 6], group them into
as many groups as possible such that the sum of each
group is 0 (modulo 7).

1 4 1 3 5 5 4 10B: 4

Simplifying the problem even further:

Given a set B with elements from [0, 6], group them into
as many groups as possible such that the sum of each
group is 0 (modulo 7).

1 4 1 3 5 5 4 1

0

B: 4

Simplifying the problem even further:

Given a set B with elements from [0, 6], group them into
as many groups as possible such that the sum of each
group is 0 (modulo 7).

1

4

1

3

5 5 4 1

0

B: 4

Simplifying the problem even further:

Given a set B with elements from [0, 6], group them into
as many groups as possible such that the sum of each
group is 0 (modulo 7).

1

4

1

3

5

5

4

1
0

B: 4

Simplifying the problem even further:

Given a set B with elements from [0, 6], group them into
as many groups as possible such that the sum of each
group is 0 (modulo 7).

The solution is then N − number of groups = 10 - 4 = 6

1

4 1

3 5

41
0

45

To find the optimal grouping of numbers we start greedy:

1) As long as we have a zero in the set, make a group
with a single zero in it.

2) As long as there is a pair of numbers that add up to 7
(1 and 6, 2 and 5, 3 and 4), make a group with these two
numbers in it.

At this point the numbers in our set come from a set of at
most three distinct integers: no zeros, either ones or
sixes, either twos or fives, either threes or fours.

There exists a greedy O(N) strategy we could follow, but
it's rather hard to find. Instead we may use a O(N^3)
dynamic programming to complete the assignment.

Problem I
Intrinsic Interval

Submits: 42
Accepted: at least 1

First solved by: Jagiellonian 1
Jagiellonian University in Krakow

(Hlembotskyi, Stokowacki, Zieliński)
02:10:47

Author: Gustav Matula

An interval of the permutation is a consecutive
subsequence consisting of consecutive numbers.

2 3 1 6 4 7 5 8

An interval of the permutation is a consecutive
subsequence consisting of consecutive numbers.

2 3 1 6 4 7 5 8

An interval of the permutation is a consecutive
subsequence consisting of consecutive numbers.

2 3 1 6 4 7 5 8

An interval of the permutation is a consecutive
subsequence consisting of consecutive numbers.

2 3 1 6 4 7 5 8

An interval of the permutation is a consecutive
subsequence consisting of consecutive numbers.

2 3 1 6 4 7 5 8

An interval of the permutation is a consecutive
subsequence consisting of consecutive numbers.

For a given subsequence we need to find the shortest
enclosing interval.

2 3 1 6 4 7 5 8

An interval of the permutation is a consecutive
subsequence consisting of consecutive numbers.

For a given subsequence we need to find the shortest
enclosing interval.

To see how we could expand the subsequence into the
shortest enclosing interval, let's visualize the permutation
in two dimensions.

With careful implementation of the algorithm, it is
possible to expand a subsequence [a, b] to an enclosing
interval [x, y] in O(|y - x| - |b - a|).

However, that's too slow for this problem.

Instead, we'll develop divide and conquer algorithm to
answer all queries at once.

We initialize the result for each query with interval [1, n]
and then we'll try to improve it.

Improve(queries, lo, hi) will try to improve each query in
queries by considering intervals completely within [lo, hi]
window.
Improve(queries, lo, hi):
 if lo == hi: return
 mid = (lo + hi) / 2
 Improve([q in queries where q.b <= mid], lo, mid)
 Improve([q in queries where q.a > mid], mid + 1, hi)
 ImproveViaMid(queries, lo, mid, hi)

ImproveViaMid considers all intervals that contain
[mid, mid + 1], and are within the [lo, hi] to improve
provided queries.

A query participates in O(log(N)) ImproveViaMid calls.

Starting from subsequence [mid, mid + 1], we expand it
to the left, storing all intervals we encounter until we exit
the [lo, hi] window.

lo=5 hi=24mid=14

lo=5 hi=24mid=14

Starting from subsequence [mid, mid + 1], we expand it
to the left, storing all intervals we encounter until we exit
the [lo, hi] window.

Left intervals: [12, 15]

lo=5 hi=24mid=14

Starting from subsequence [mid, mid + 1], we expand it
to the left, storing all intervals we encounter until we exit
the [lo, hi] window.

Left intervals: [12, 15], [8, 17]

lo=5 hi=24mid=14

Starting from subsequence [mid, mid + 1], we expand it
to the left, storing all intervals we encounter until we exit
the [lo, hi] window.

Left intervals: [12, 15], [8, 17], [6, 22]

lo=5 hi=24mid=14

Again, starting from subsequence [mid, mid + 1], we
expand it to the right, storing all intervals we encounter
until we exit the [lo, hi] window.

Left intervals: [12, 15], [8, 17], [6, 22]

lo=5 hi=24mid=14

Again, starting from subsequence [mid, mid + 1], we
expand it to the right, storing all intervals we encounter
until we exit the [lo, hi] window.

Left intervals: [12, 15], [8, 17], [6, 22]

Right intervals: [12, 15]

lo=5 hi=24mid=14

Again, starting from subsequence [mid, mid + 1], we
expand it to the right, storing all intervals we encounter
until we exit the [lo, hi] window.

Left intervals: [12, 15], [8, 17], [6, 22]

Right intervals: [12, 15], [12, 17]

lo=5 hi=24mid=14

Again, starting from subsequence [mid, mid + 1], we
expand it to the right, storing all intervals we encounter
until we exit the [lo, hi] window.

Left intervals: [12, 15], [8, 17], [6, 22]

Right intervals: [12, 15], [12, 17], [12, 22]

lo=5 hi=24mid=14

Finally, for each query [a, b] we find the smallest left
interval that contains it and the smallest right interval that
contains it. The union of these two intervals is the
smallest interval within [lo, hi] that contains the query.

Left intervals: [12, 15], [8, 17], [6, 22]

Right intervals: [12, 15], [12, 17], [12, 22]

lo=5 hi=24

We can implement ImproveViaMid(queries, lo, mid, hi) in
O(|hi - lo| + queries.size()), for overall complexity of
O((N + Q) log N).

mid=14

Left intervals: [12, 15], [8, 17], [6, 22]

Right intervals: [12, 15], [12, 17], [12, 22]

Problem C
Cumulative Code

Submits: 2
Accepted: ?

Author: Ivan Paljak, Luka Kalinovčić

1

2 3

4 5 6 7

1

2 3

5 6 7

Code: 2

1

2 3

6 7

Code: 2 2

1

3

6 7

Code: 2 2 1

3

6 7

Code: 2 2 1 3

3

7

Code: 2 2 1 3 3

...

The removal order: left subtree, right subtree, root node.

Type A subtree

The removal order: left subtree, root node, right subtree.

Type B subtree

In the analysis we'll focus on type A trees only. Type B is
dealt with the same way.

Let's start simple and find a recursive formula fx(k) to
sum up the code generated by a type A subtree of depth
k, where root is labeled with number x.

x

...

For k = 1, there is only a single node in the subtree.

As we remove it, we append (x div 2) to the code.

fx(1) = (x div 2)

Let's start simple and find a recursive formula fx(k) to
sum up the code generated by a type A subtree of depth
k, where root is labeled with number x.

...

fx(2) = x + x + (x div 2) = 2x + (x div 2)

2x

x

2x+1

Let's start simple and find a recursive formula fx(k) to
sum up the code generated by a type A subtree of depth
k, where root is labeled with number x.

fx(3) = 2x + 2x + x + 2x+1 + 2x+1 + x + (x div 2)

 = 10x + 2 + (x div 2)

...

4x+2

2x+1

4x+34x

2x

4x+1

x

In general, fx(k) = ak·x + bk + ck·(x div 2) and we can
compute it recursively:

fx(k) = f2x(k−1) + f2x+1(k−1) + (x div 2)

f2x(k−1) = ak-1·2x + bk-1 + ck-1·(2x div 2)

= (2ak-1 + ck-1)x + bk-1

f2x+1(k−1)= ak-1·(2x + 1) + bk-1 + ck-1·((2x + 1) div 2)

= (2ak-1 + ck-1)x + ak-1 + bk-1

fx(k) = (4ak-1 + 2ck-1)x + ak-1 + 2bk-1 + (x div 2)

ak = 4ak-1 + 2ck-1 bk = ak-1 + 2bk-1 ck = 1

Now, let's come up with a formula that only sums up
code elements at indices in the query

Q = {a, a + d, a + 2·d, ..., a + (m − 1)·d}.

Let nextQ(i) be the smallest index in Q greater than or
equal to i.

Let gx(k, i) be the sum of elements at the required
indices, given a subtree of depth k with root labeled x,
and given that there are already i elements in the output
code before we process the subtree.
gx(k, i) = g2x(k−1, i) + g2x+1(k−1, i + 2k−1 − 1)

+ ((i + 2k − 1) ∊ Q)·(x div 2)

The recursive formula we have is still summing elements
one-by-one. We need to optimize it a bit.

1) If no index in [i + 1, i + 2k - 1] is in query Q, return 0
immediately.

2) Memoize function calls where:

● k ≤ K/2 and
● [i + 1, i + 2k - 1] is entirely within the query interval

[a, a + a + (m − 1)·d].

The key for the memoization is (k, nextQ(i) - i).

Because of 1), nextQ(i) ≤ i + 2k - 1, so we have O(2K/2)
states to memoize.

The remaining cases where we don't return 0 or
memoize are:

1) Cases for type B subtrees. There are only O(K) such
function calls.

2) Cases with k > K/2. There are O(2K/2) function calls.

3) Cases where [i + 1, i + 2k - 1] intersects with the query
interval [a, a + a + (m − 1)·d], but is not entirely within.
There are only O(K) such function calls.

Overall complexity of the algorithm is O(2K/2) per query.

Problem E
Embedding Enumeration

Submits: 1
Accepted: ?

Author: Luka Kalinovčić

Problem: Given a tree, count the number of ways to
embed it in a 2 by N grid, such that two nodes connected
by an edge are adjacent in the grid. Node 1 has to be in
top-left cell.

1 3 5

27 6 4

9

8

Problem: Given a tree, count the number of ways to
embed it in a 2 by N grid, such that two nodes connected
by an edge are adjacent in the grid. Node 1 has to be in
top-left cell.

1 3 7

25 6

4

9

8

Observation: When we root the tree at node 1, it has to
be a binary tree. Otherwise, we have a node with degree
greater than three, which can't be embedded.

Let's build a dynamic programming solution that
enumerates all embeddings. We can describe the state
as (x, delta).

At this state, we have embedded all nodes except for
those in x's subtree. Node x is embedded at the last cell
of the longer of the two rows, and the delta is the
difference in length between the two rows.

x

delta

To make the transition, we'll try every possible
assignment of node x's children to neighboring cells.

If assignment assigns a node y to a cell below x, we also
try every possible assignment of y's children to
neighboring cell.

Let's analyze possible outcomes of such assignments.

x

delta

Trivial case: x has no children. We've found one valid
embedding.

x

delta

Node x has one child node y that was assigned to the
right cell.

x

delta

y

Node x has one child node y that was assigned to the
right cell.

We transition to state (y, delta + 1)

delta + 1

y

Node x has one child node y that was assigned to the
bottom cell. We also assign y's children to neighboring
cells.

x

delta

y

Node x has one child node y that was assigned to the
bottom cell. We also assign y's children to neighboring
cells.

If it there is a child node z assigned to the left, we know
that its subtree has form a simple chain of length up to
(delta - 1). Otherwise we can't make a valid embedding
from this assignment.

x

delta

yz

Node x has one child node y that was assigned to the
bottom cell. We also assign y's children to neighboring
cells.

If it there is a child node v assigned to the right, we
transition to state (v, 1).

x

delta

y v

Node x has one child node y that was assigned to the
bottom cell. We also assign y's children to neighboring
cells.

If it there is a child node v assigned to the right, we
transition to state (v, 1).

delta

v

In the general case, x has two children y and u, and y
has a child v assigned to the lower right cell.

We now have two nodes, u and v, whose subtrees are
not yet embedded, so we can't transition to any simple
state just yet.

x

delta

y v

u

We keep appending children to the right until one of the
chain runs out of nodes (or we encounter a node with
two children which would make this assignment invalid).

x

delta

y v

u

.

.

We keep appending children to the right until one of the
chain runs out of nodes (or we encounter a node with
two children which would make this assignment invalid).

x

delta

y v

u

.

.

.

.

We keep appending children to the right until one of the
chain runs out of nodes (or we encounter a node with
two children which would make this assignment invalid).

Once that happens, we can transition to state (f, 1).

x

delta

y v

u

.

.

.

.

f

There are O(N2) states, and it's possible to implement all
transitions in O(1) with some precomputation.

To speed it up, let's try to fix delta at 1, and see what
breaks.

The only case where we actually increase the delta is the
one where node x has one child assigned to the right
cell.

x y

Originally we would transition to state (y, 2), but what
kinds of embeddings would we miss if we transitioned to
(y, 1) instead?

x y

Originally we would transition to state (y, 2), but what
kinds of embeddings would we miss if we transitioned to
(y, 1) instead?

x y . z

. . . .

Originally we would transition to state (y, 2), but what
kinds of embeddings would we miss if we transitioned to
(y, 1) instead?

x y . z

. . . .

f

Originally we would transition to state (y, 2), but what
kinds of embeddings would we miss if we transitioned to
(y, 1) instead?

We need to identify the node z in the subtree, and assign
its neighbour, and verify that there is a chain of the right
size going back all the way in the other row.

x y . z

. . . .

f

We've reduced the number of states to O(N) and with
some careful programming and precomputation, all the
transitions can be done in O(1), so the overall complexity
is O(N).

Thanks!

